Nugget Discovery with a Multi-objective Cultural Algorithm
نویسندگان
چکیده
Partial classification popularly known as nugget discovery comes under descriptive knowledge discovery. It involves mining rules for a target class of interest. Classification “If-Then” rules are the most sought out by decision makers since they are the most comprehensible form of knowledge mined by data mining techniques. The rules have certain properties namely the rule metrics which are used to evaluate them. Mining rules with user specified properties can be considered as a multi-objective optimization problem since the rules have to satisfy more than one property to be used by the user. Cultural algorithm (CA) with its knowledge sources have been used in solving many optimization problems. However research gap exists in using cultural algorithm for multi-objective optimization of rules. In the current study a multi-objective cultural algorithm is proposed for partial classification. Results of experiments on benchmark data sets reveal good performance.
منابع مشابه
Data Mining Rules Using Multi-Objective Evolutionary Algorithms
In data mining, nugget discovery is the discovery of interesting classification rules that apply to a target class. In previous research, heuristic methods (Genetic algorithms, Simulated Annealing and Tabu Search) have been used to optimise a single measure of interest. This paper proposes the use of multiobjective optimisation evolutionary algorithms to allow the user to interactively select a...
متن کاملMulti-Objective Metaheuristic Algorithms for Finding Interesting Rules in Large Complex Databases
The research was concerned with developing efficient algorithms for finding classification rules from large databases. The data mining task of classification is concerned with finding patterns in classification data, that is, data which has a class label for each instance or record in the database. When the classification task is restricted to a pre-defined class label, the data mining task is ...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملَA Multi-objective simulated annealing algorithm to solving flexible no-wait flowshop scheduling problems with transportation times
This paper deals with a bi-objective hybrid no-wait flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which we consider transportation times between stages. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presen...
متن کاملA New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm
This paper presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1207.2630 شماره
صفحات -
تاریخ انتشار 2012